We show that non-occurrence of the Lavrentiev phenomenon does not imply thatthe singular set is small. Precisely, given a compact Lebesgue null subset ofthe line $E$ and an arbitrary superlinearity, there exists a smooth, strictlyconvex Lagrangian with this superlinear growth, such that all minimizers of theassociated variational problem have singular set exactly $E$, but still admitapproximation in energy by smooth functions.
展开▼
机译:我们证明不出现Lavrentiev现象并不表示奇异集很小。精确地,给定线$ E $的紧致Lebesgue空子集和任意超线性,存在一个具有此超线性增长的光滑,严格凸的Lagrangian值,因此,所有相关变分问题的极小值都精确地设定了奇异值$ E $,但仍然近似通过平稳的功能获得能量。
展开▼